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Abstract: Although dementia is a common and devastating disease that has been studied intensely 

for more than 100 years, no effective disease modifying treatment has been found. At this impasse, 

new approaches are important. The purpose of this paper is to provide, in the context of current 

research, one clinician’s perspective regarding important challenges in the field in the form of 

specific challenges. These challenges not only illustrate the scope of the problems inherent in finding 

treatments for dementia, but can also be specific targets to foster discussion, criticism and new 

research. One common theme is the need to transform research activities from small projects in 

individual laboratories/clinics to larger multinational projects, in which each clinician and 

researcher works as an integral part. This transformation will require collaboration between 

researchers, large corporations, regulatory/governmental authorities and the general population, as 

well as significant financial investments. However, the costs of transforming the approach are small 

in comparison with the cost of dementia. 
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1. Introduction 

A total of 115 years has passed since Alois Alzheimer [1] published his paper on 

dementia, in which he made the optimistic statement: “A histological examination will 

enable us to determine the characteristics of some of these cases. This process will 

gradually lead to a clinical distinction of specific illnesses”. However, despite subsequent 

massive clinical and basic science research [2,3], it remains difficult to identify and 

diagnose dementia in the early stages, or to develop a disease modifying treatment. 

Now is the time for novel approaches. Historically, new and exciting ideas have 

arisen out of attempts to answer seemingly simple challenges. For example, the X-prizes 

[4], Hilbert’s 10 problems in mathematics [5], the structure of DNA [6] or the 

electromagnetic spectrum emitted by a heated object [7], have all generated completely 

novel and unexpectedly important developments. 

The purpose of this paper is to propose, in the context of current knowledge, specific 

challenges regarding dementia that may stimulate controversy and specific research. 

Many elements of these challenges have already been addressed to some degree, but the 

full promise of each challenge cannot be met without integrating multiple techniques and 

ideas. 

2. Specific Challenges 

2.1. Challenge 1: Optimizing and Quantifying the Patient Evaluation 

There are many types of dementia, which can have different etiologies, symptoms 

and prognosis [8,9]. The first step in analyzing dementia must be a widely available, 

comprehensive, yet concise assessment of each individual, which can be applied serially 

[10] in both cognitively healthy persons and patients with clear dementia. It must include 

multiple components including those listed below. 
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2.1.1. Quantification of Behavior 

Improved Analysis of Standard Behavioral Testing 

The evaluation for cognitive impairment begins at the behavioral level [11]. The 

problem is that cognitive tests are naturally dependent on many factors, such as age 

[12,13], race, gender, education, language [14], IQ and experience [15], as well as medical 

factors such as sleep [16,17], pain and many others. There are two solutions to this 

problem, one is to pick a test or set of tests and then study how its results change with all 

of these factors [18]. Although this a very reasonable approach, it is complex because the 

number of factors that influence test results, even in normal people, will be large and 

difficult to predict. This results in large test variances for individuals and reduces the 

precision of the assessment. A second solution is to start with a number of tests including 

quantitative psychophysical tests (that may be less dependent on education and language 

than traditional paper and pencil tests) [19,20] and use statistical techniques to find a 

limited combination of these test elements, which is minimally dependent on the factors 

that influence cognition in cognitively healthy people. This is not enough, however, 

because the ideal test should not only yield results that were similar in cognitively healthy 

people, but also be sensitive to the different phenotypes seen in cognitive disorders of 

differing etiology. 

Data Mining/Extraction Techniques 

Important techniques that might provide additional information not available in the 

standardized paper and pencil and psychophysical testing, are modern data mining 

techniques to extract features in a video [21] or audio recordings of individuals [22]. The 

use of data available in social media [23] could also provide important information. 

Other Testing 

Other important non-neuropsychological clinical tests that can provide insight into 

dementia involve eye movements [24,25], retinal function [26], gait [27], olfaction [28,29], 

taste [30] and hand movements [31]. 

2.1.2. General Medical Conditions 

No assessment of dementia is complete without a knowledge of the patient’s general 

medical conditions. This would have to include all elements of the traditional history and 

physical, as well as laboratory testing for common systemic conditions that could affect 

the brain such as vitamin B12, thyroid function, etc. The National Alzheimer’s 

Coordinating Center’s Uniform Data Set [32] contains additional data that is also 

important. 

2.1.3. The Neurological Exam 

A full description of the patient would also include the results of the general 

neurologic examination as it provides information on strength, sensation, gait, reflexes, 

and cranial nerves that are important. Many quantitative methods have been proposed to 

calculate this [33,34] and the selection of the optimal data variables is critical. At the 

present time, specific examinations are used for each disease. This approach is useful once 

the pathophysiology of a disease is clear but for dementia, a wider net must be cast. 

2.1.4. Imaging 

The results of brain imaging are critical to any full patient description. Clearly, MRI 

and/or CT images of the brain should be obtained if possible [35,36]. However, a 

comprehensive evaluation should include the possibility of obtaining perfusion imaging 

[37] as well as CT angiogram and MR angiogram images [38] and metabolic PET scans 

[39]. Amyloid and tau imaging [40] are also important, as is functional MRI [41,42]. In 

particular, functional imaging coupled with electrophysiology can provide information 
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about the brain connectome [43]. The Alzheimer’s Disease Neuroimaging Initiative 

(https://adni.loni.usc.edu/, accessed on September 24 2022) has made great progress in this 

direction, but this pioneering work is just a beginning, and must be extended. 

2.1.5. Electrophysiology 

Much information on the function of brain networks is available in neurophysiologic 

studies, such as EEG and evoked potentials in dementia [44–47] and should be included 

in the patient database when available 

2.1.6. Serum/CSF Biomarkers 

Various biomarkers [48] provide valuable information on diagnosing and 

understanding the mechanisms underlying dementia [49,50]. Some of these are 

neurofilaments [51], Aβ42 [52,53], tau [54,55], GAP-43 [56], neurogranin [57], trem2 [58], 

neuron-specific enolase [59], YKL-40 [60], and neuroregulin [61] among others. These also 

include exosomes and microRNA, which contain important information about the state 

and function of cells in the central nervous system [62–64]. 

2.1.7. Neuropathology/Histology/Electronmicroscopy 

When available, understanding the microstructure of the brain and the individual 

neurons can provide vital information about the mechanisms of cognitive decline in 

dementia [65–67]. This includes standard histology and immunopathology [68,69]. 

However, electron microscopy provides crucial information regarding the state of 

subcellular organelles and structures [70,71]. 

2.1.8. Omics 

Geneomic, proteomics, metabolomics and other similar approaches have been 

proposed as valuable markers in the study of dementia [72]. 

Genomics 

Knowledge of the individual genome [73,74], as well as epigenetic markers of 

expression [75], are also critical in understanding dementia. 

Proteomics 

In-depth proteomic profiling to identify diagnostic and prognostic markers and gain 

understanding of complex pathophysiologic mechanisms [76]. 

Denomics 

This is the study of the demographic factors that may influence health outcomes 

including diet [77], education, income, age, exercise and other activities. It also includes 

exposures to various environmental factors included in the exposome [78]. 

Metabolomics 

These studies [79,80] can find patterns of metabolites in the blood that could correlate 

with dementia, and may thus provide insight into mechanisms. 

2.1.9. Managing the Data 

What is proposed above is an enormous amount of information, but starting with a 

database that is too limited is problematic: 

1. As more is learned about the different dementias, it may be that factors initially 

thought of low importance could become increasingly significant. 

2. More data will help find the most effective tools for diagnosing and distinguishing 

among the different dementias. 
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3. More detailed knowledge will help build model systems that better reflect each type 

of dementia. 

4. Increases the chance of unique new discoveries. 

5. Data must be collected longitudinally over time. 

2.1.10. Making It Practical 

It is easy to conceive of such a large database, but the key to this challenge is to bring 

together the elements to make it practical: 

1. Funding. 

2. Government and regulatory agency buy in. 

3. “Assuring beneficence, justice and respect for all persons involved” [81]. 

4. Allowing individuals control over the use of private information. 

5. Data storage, access and availability. It is important that elements of the database be 

available at multiple levels, allowing maximal researcher access at various levels 

without compromising private information. Allowing general access to elements of 

the database can allow crowd-sourcing [82] that can lead to new insights. 

6. Data analysis. New statistical methods and computing methods will need to be 

developed to analyze the data, including machine learning [83–85], as well as other 

techniques [86,87]. 

7. Large patient number. Using a large data set with many dependent variables requires 

a sizeable number of patients in order to find patterns in the data. 

2.2. Challenge 2: Quantifying Normal Aging 

There are many biologic processes that result in a dementia phenotype. Some of these 

processes arise from causes outside of the neuronal/glial networks responsible for 

cognition, such as stroke, infections, trauma and metabolic disorders. Some processes 

causing progressive cognitive impairment are pathologic, but some may be inherent to 

the normal brain. Although it is easy to recognize pathologic brain function when it is 

severe, in order to identify the initial steps in the progression of dementia, it is critical to 

have very precise definitions of normal function at each age. A database such as the one 

described under Challenge 1 provides the basis for comparing changes during normal 

ageing and dementiaa, and allows us to ask more specific questions. 

2.2.1. Changes over Time 

In the absence of any pathology, what is the fate of the neuronal/glial networks over 

time? This needs to be determined from many viewpoints including: behavioral [88–91], 

imaging [92–95], exosomes [96], metabolomics [97] and molecular biologic [98]. 

1. What is the time course of this change? There may in fact be multiple time dependent 

changes in different variables. Which variables demonstrate the first changes? 

2. What mechanisms underlie the changes in normal elderly patients? 

3. Are any of these “normal aging” changes seen in humans, also seen in animals and 

isolated neurons? Are the time courses of the changes the same in each system? 

4. Are there natural processes, exposures or genetic factors in humans or animals that 

ameliorate or accelerate these time dependent changes? 

5. Beware overzealous extrapolation from animals to humans [3]. 

2.2.2. Model Systems 

Eventually, progress toward understanding normal brain ageing and dementia will 

be facilitated by robust model systems. Model systems that explain only a very few of the 

changes will not be as valuable as systems that explain many different changes. Models 

can be based in animals (with caution) [99], in vitro systems [100], mathematical or 

computational [101,102]. These models will be critical to exploring and creating new ideas. 
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2.3. Challenge 3: Quantifying Pathologic Aging 

The same techniques used to study and quantify normal aging can be applied to 

patients who have diagnoses of different types of dementia: 

1. Use the existing data to refine the definitions of the various dementia types [103–108]. 

2. Follow-up longitudinal data over time to find the first difference noted between 

normal brain aging and pathological aging in patients eventually diagnosed with 

dementia [109–112]. This will form a more effective focus for disease modifying 

treatment than changes that occur late in the illness. 

3. What are the characteristics of the nervous system that are different (see Challenge 

2) at the onset [113] of pathological aging? 

4. What is the detailed temporal relationship between amyloid and tau pathology, and 

the various biomarkers and behavioral changes in the database [114–116]? 

2.4. Challenge 4: Building New Model Systems for Dementia 

There has been much work on animal models [117–120], cellular models, [121–125] 

and computational/mathematical models [126–129] of dementia. However, none of these 

has captured all of the critical elements involved in the pathogenesis of the dementias and 

so cannot generate the sought-after answers. With the additional information obtained as 

part of these challenges, more effective models capturing more of the critical elements of 

dementia can be created, that will better serve the goal of understanding and treating 

dementia. 

The complexity of the human brain is such that it may not be possible to immediately 

find a single model. Thus, it is necessary to have multiple overlapping models beginning 

at the smallest scale. There has been much work on the dynamics of protein folding and 

molecular dynamics [130–132] that has been stretched to the organelle level [133]. 

Beginning with this, models of the relevant aspects of single cell behavior [134,135] can be 

created and matched to cellular models. The interplay between predictions and 

observations at this level can help optimize modelling at this low level. Subsequently, 

modelling using organoids and tissue slices can be used and compared to mouse rat and 

primate models, all of which will be compared to humans in various ways. 

This requires large scale collaborations between scientists with different 

backgrounds using different techniques. 

2.5. Challenge 5: Search for Factors That Modify the Trajectory of Dementia Related Changes 

The data generated by the previous challenges forms the substrate to generate 

hypotheses and test potential treatments for dementia. The model systems can be used to 

help choose the most appropriate molecules and doses, while predicting side effects of 

treatment before applying them to humans. Once potential therapies reach the level of 

human trials, the comprehensive data sets will be the key to understanding outcomes and 

refining future therapies. In addition, analysis of the demographic and exposure data in 

the context of multivariable outcomes will be key to using the natural experiments 

resulting from different genetic and environmental variables to look for potential 

therapies that can be tested. This requires large numbers of patients and modern 

computational techniques. Maximal data access that does not compromise individual 

privacy must be allowed to maximize finding important trends in such a large database. 

3. Discussion 

The costs of dementia at the personal and family level are incalculable, but the global 

financial costs are estimated to be on the order of USD 3 trillion [136] yearly. By 

comparison, the total yearly NIH budget at USD 45 billion dollars is only 1.5% of this 

number, and the operating expenses of a huge corporation such as Amazon are on the 

order of USD 100 billion each year, or 3% of the costs of dementia. Although the cost of 

solving the challenges proposed in this paper (Table 1) is huge, they can likely be met with 
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resources of that magnitude, if they are well organized. Despite the cost, the reward is so 

large that such an investment is warranted. 

Table 1. Summary of Challenges in Dementia. 

Challenge Details Cost Difficulty Comment 

Optimizing and 

Quantifying the 

Evaluation 

Develop and maintain huge clinical 

databases with clinical, imaging, 

molecular and biochemical data for 

large numbers of patients. 

++++ ++++ 

Although difficult, this is the 

necessary pathway to progress in 

diagnosing, understanding the 

mechanisms of and treating 

dementia. 

Quantifying Normal 

Aging 

Without a comprehensive 

understanding of normal brain, 

aging it is impossible to identify the 

events that initiate the downward 

decline we see in dementia. 

+++ +++ 

Once the first challenge has been 

met, this is much simpler but still 

requires substantial resources due to 

the need for long term studies. 

Quantifying 

Pathologic Aging 
 +++ +++  

Building New Model 

Systems 
 ++ ++ 

The key is collaboration between 

teams of scientists with different 

backgrounds ranging from quantum 

and statistical physics, chemistry, 

biochemistry and systems biology to 

clinical care. 

Search for factors that 

modify the trajectory 

of dementia related 

changes 

 ++ ++ 

Once the database is established 

appropriate computational resources 

need to be available to allow for 

analysis. 

4. Conclusions 

Finding a cure for dementia has so far proven intractable using current scientific 

models. It is now time to pursue a new model driven by large scale collaborations, not 

only between researchers and clinicians, but also including large corporations and world 

governments as partners. In addition, involving the general population in decisions about 

data use and crowd-sourcing analyses on big data will be critical elements of this new 

approach. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Acknowledgements: The author wishes to thank the Alzheimer’s Foundation of America for their 

support of clinical programs and research that will improve the lives of patients with dementia. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Alzheimer, A.; Stelzmann, R.A.; Schnitzlein, H.N.; Murtagh, F.R. An English translation of Alzheimer’s 1907 paper, “Uber eine 

eigenartige Erkankung der Hirnrinde”. Clin. Anat. 1995, 8, 429–431. https://doi.org/10.1002/ca.980080612. 

2. Reiss, A.B.; Glass, A.D.; Wisniewski, T.; Wolozin, B.; Gomolin, I.H.; Pinkhasov, A.; De Leon, J.; Stecker, M.M. Alzheimer’s 

disease: Many failed trials, so where do we go from here? J. Investig. Med. 2020, 68, 1135–1140. https://doi.org/10.1136/jim-2020-

001297. 



Medicina 2022, 58, 1368 7 of 12 
 

 

3. Reiss, A.B.; Montufar, N.; DeLeon, J.; Pinkhasov, A.; Gomolin, I.H.; Glass, A.D.; Arain, H.A.; Stecker, M.M. Alzheimer Disease 

Clinical Trials Targeting Amyloid: Lessons Learned From Success in Mice and Failure in Humans. Neurologist 2021, 26, 52–61. 

https://doi.org/10.1097/NRL.0000000000000320. 

4. Chandler, D.L. Discovering Cancer Earlier: A New US$100 Million X Prize Aims to Shift the Odds in Cancer Survival. IEEE 

Pulse 2018, 9, 8–10. https://doi.org/10.1109/MPUL.2018.2856958. 

5. Hilbert, D. Mathematical Problems. Bull. Amer. Math. Soc. 1902, 8, 437–479. https://doi.org/10.1090/S0002-9904-1902-00923-3. 

6. Watson, J.D. The Double Helix: A Personal Account of the Discovery of the Structure of DNA; Atheneum: New York, NY, USA, 1968. 

7. Planck, M. On the law of distribution of energeny in the normal spectrum. Ann. Phys. 1901, 4, 553. 

https://doi.org/10.1002/andp.19013090310. 

8. Rogan, S.; Lippa, C.F. Alzheimer’s disease and other dementias: A review. Am. J. Alzheimers Dis. Other Demen. 2002, 17, 11–17. 

https://doi.org/10.1177/153331750201700106. 

9. Arvanitakis, Z.; Shah, R.C.; Bennett, D.A. Diagnosis and Management of Dementia: Review. JAMA 2019, 322, 1589–1599. 

https://doi.org/10.1001/jama.2019.4782. 

10. Jobst, K.A.; Barnetson, L.P.; Shepstone, B.J. Accurate prediction of histologically confirmed Alzheimer’s disease and the 

differential diagnosis of dementia: The use of NINCDS-ADRDA and DSM-III-R criteria, SPECT, X-ray CT, and APO E4 medial 

temporal lobe dementias. The Oxford Project to Investigate Memory and Aging. Int. Psychogeriatr. 1997, 9 (Suppl. 1), 191–222; 

discussion 247–252. 

11. Jutten, R.J.; Thompson, L.; Sikkes, S.A.M.; Maruff, P.; Molinuevo, J.L.; Zetterberg, H.; Alber, J.; Faust, D.; Gauthier, S.; Gold, M.; 

et al. A Neuropsychological Perspective on Defining Cognitive Impairment in the Clinical Study of Alzheimer’s Disease: 

Towards a More Continuous Approach. J. Alzheimers Dis. 2022, 86, 511–524. https://doi.org/10.3233/JAD-215098. 

12. Fällman, K.; Lundgren, L.; Wressle, E.; Marcusson, J.; Classon, E. Normative data for the oldest old: Trail Making Test A, Symbol 

Digit Modalities Test, Victoria Stroop Test and Parallel Serial Mental Operations. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. 

Cogn. 2020, 27, 567–580. https://doi.org/10.1080/13825585.2019.1648747. 

13. Vicente, S.G.; Rivera, D.; Barbosa, F.; Gaspar, N.; Dores, A.R.; Mascialino, G.; Arango-Lasprilla, J.C. Normative data for tests of 

attention and executive functions in a sample of European Portuguese adult population. Neuropsychol. Dev. Cogn. B Aging 

Neuropsychol. Cogn. 2021, 28, 418–437. https://doi.org/10.1080/13825585.2020.1781768. 

14. Enobi, Y.; Kemmotsu, N.; Robinson, E.; Murphy, C. Effects of language and acculturation on neurocognitive performance of 

Japanese Americans. Neuropsychology 2022, 36, 651–663. https://doi.org/10.1037/neu0000839. 

15. Boone, K.B.; Victor, T.L.; Wen, J.; Razani, J.; Pontón, M. The association between neuropsychological scores and ethnicity, 

language, and acculturation variables in a large patient population. Arch. Clin. Neuropsychol. 2007, 22, 355–365. 

16. Curtis, A.F.; Williams, J.M.; McCoy, K.J.M.; McCrae, C.S. Chronic Pain, Sleep, and Cognition in Older Adults with Insomnia: A 

Daily Multilevel Analysis. J. Clin. Sleep Med. 2018, 14, 1765–1772. https://doi.org/10.5664/jcsm.7392. 

17. McCrae, C.S.; Curtis, A.F.; Williams, J.M.; Dautovich, N.D.; McNamara, J.P.H.; Stripling, A.; Dzierzewski, J.M.; Berry, R.B.; 

McCoy, K.M.; Marsiske, M. Effects of Brief Behavioral Treatment for Insomnia on Daily Associations between Self-Reported 

Sleep and Objective Cognitive Performance in Older Adults. Behav. Sleep Med. 2020, 18, 577–588. 

https://doi.org/10.1080/15402002.2019.1632201. 

18. Chandler, M.J.; Lacritz, L.H.; Hynan, L.S.; Barnard, H.D.; Allen, G.; Deschner, M.; Weiner, M.F.; Cullum, C.M. A total score for 

the CERAD neuropsychological battery. Neurology 2005, 65, 102–106. 

19. Longhurst, J.K.; Rider, J.V.; Cummings, J.L.; John, S.E.; Poston, B.; Held Bradford, E.C.; Landers, M.R. A Novel Way of 

Measuring Dual-Task Interference: The Reliability and Construct Validity of the Dual-Task Effect Battery in Neurodegenerative 

Disease. Neurorehabil. Neural Repair 2022, 36, 346–359. https://doi.org/10.1177/15459683221088864. 

20. Hartle, L.; Martorelli, M.; Balboni, G.; Souza, R.; Charchat-Fichman, H. Diagnostic accuracy of CompCog: Reaction time as a 

screening measure for mild cognitive impairment. Arq. Neuropsiquiatr. 2022, 80, 570–579. 

21. Ashraf, A.; Taati, B. Automated Video Analysis of Handwashing Behavior as a Potential Marker of Cognitive Health in Older 

Adults. IEEE J. Biomed. Health. Inform. 2016, 20, 682–690. https://doi.org/10.1109/JBHI.2015.2413358. 

22. Liu, Z.; Paek, E.J.; Yoon, S.O.; Casenhiser, D.; Zhou, W.; Zhao, X. Detecting Alzheimer’s Disease Using Natural Language 

Processing of Referential Communication Task Transcripts. J. Alzheimers Dis. 2022, 86, 1385–1398. https://doi.org/10.3233/JAD-

215137. 

23. Tahami Monfared, A.A.; Stern, Y.; Doogan, S.; Irizarry, M.; Zhang, Q. Stakeholder Insights in Alzheimer’s Disease: Natural 

Language Processing of Social Media Conversations. J. Alzheimers Dis. 2022, 89, 695–708. https://doi.org/10.3233/JAD-220422. 

24. Bueno, A.P.A.; Sato, J.R.; Hornberger, M. Eye tracking-The overlooked method to measure cognition in neurodegeneration? 

Neuropsychologia 2019, 133, 107191. 

25. Russell, L.L.; Greaves, C.V.; Convery, R.S.; Bocchetta, M.; Warren, J.D.; Kaski, D.; Rohrer, J.D. Eye movements in frontotemporal 

dementia: Abnormalities of fixation, saccades and anti-saccades. Alzheimers Dement. 2021, 7, e12218. 

https://doi.org/10.1002/trc2.12218. 

26. Mahajan, D.; Votruba, M. Can the retina be used to diagnose and plot the progression of Alzheimer’s disease? Acta Ophthalmol. 

2017, 95, 768–777. https://doi.org/10.1111/aos.13472. 

27. Lin, Y.C.; Hsu, W.C.; Wu, C.K.; Chang, W.H.; Wu, K.P.; Wong, A.M. Comparison of motor performance of upper and lower 

extremities in dual-task tests in patients with mild Alzheimer’s dementia. Aging Clin. Exp. Res. 2016, 28, 491–496. 

https://doi.org/10.1007/s40520-015-0441-1. 



Medicina 2022, 58, 1368 8 of 12 
 

 

28. Payne, M.; Manera, V.; Robert, P.; Vandersteen, C.; Beauchet, O.; Galery, K.; Sacco, G.; Fabre, R.; Gros, A. Olfactory identification 

disorders due to Alzheimer’s disease: A new test from France to Quebec. PLoS ONE 2022, 17, e0265764. 

https://doi.org/10.1371/journal.pone.0265764. 

29. Thompson, M.D.; Knee, K.; Golden, C.J. Olfaction in persons with Alzheimer’s disease. Neuropsychol. Rev. 1998, 8, 11–23. 

https://doi.org/10.1023/a:1025627106073. 

30. Kouzuki, M.; Ichikawa, J.; Shirasagi, D.; Katsube, F.; Kobashi, Y.; Matsumoto, H.; Chao, H.; Yoshida, S.; Urakami, K. Detection 

and recognition thresholds for five basic tastes in patients with mild cognitive impairment and Alzheimer’s disease dementia. 

BMC Neurol. 2020, 20, 110. https://doi.org/10.1186/s12883-020-01691-7. 

31. Ilardi, C.R.; Iavarone, A.; La Marra, M.; Iachini, T.; Chieffi, S. Hand movements in Mild Cognitive Impairment: Clinical 

implications and insights for future research. J. Integr. Neurosci. 2022, 21, 67. https://doi.org/10.31083/j.jin2102067. 

32. Besser, L.; Kukull, W.; Knopman, D.S.; Chui, H.; Galasko, D.; Weintraub, S.; Jicha, G.; Carlsson, C.; Burns, J.; Quinn, J.; et al. 

Version 3 of the National Alzheimer’s Coordinating Center’s Uniform Data Set. Alzheimer Dis. Assoc. Disord. 2018, 32, 351–358. 

https://doi.org/10.1097/WAD.0000000000000279. 

33. Potvin, A.R.; Tourtellotte, W.W. The neurological examination: Advancements in its quantification. Arch. Phys. Med. Rehabil. 

1975, 56, 425–437. 

34. Steenland, K.; Dick, R.; Fine, L. Agreement between clinical examination and quantitative tests of neurologic function among 

384 subjects. Am. J. Ind. Med. 2001, 39, 361–368. https://doi.org/10.1002/ajim.1026. 

35. Battineni, G.; Chintalapudi, N.; Hossain, M.A.; Losco, G.; Ruocco, C.; Sagaro, G.G.; Traini, E.; Nittari, G.; Amenta, F. Artificial 

Intelligence Models in the Diagnosis of Adult-Onset Dementia Disorders: A Review. Bioengineering 2022, 9, 370. 

https://doi.org/10.3390/bioengineering9080370. 

36. Uchida, Y.; Kan, H.; Sakurai, K.; Oishi, K.; Matsukawa, N. Quantitative susceptibility mapping as an imaging biomarker for 

Alzheimer’s disease: The expectations and limitations. Front. Neurosci. 2022, 16, 938092. 

https://doi.org/10.3389/fnins.2022.938092. 

37. Krishnan, S.; Talley, B.D.; Slavin, M.J.; Doraiswamy, P.M.; Petrella, J.R. Current status of functional MR imaging, perfusion-

weighted imaging, and diffusion-tensor imaging in Alzheimer’s disease diagnosis and research. Neuroimaging Clin. N. Am. 2005, 

15, 853–868. 

38. Aichner, F.; Wagner, M.; Kremser, C.; Felber, S. MR-imaging of non-Alzheimer’s dementia. J. Neural Transm. Suppl. 1996, 47, 

143–153. https://doi.org/10.1007/978-3-7091-6892-9_9. 

39. Burkett, B.J.; Babcock, J.C.; Lowe, V.J.; Graff-Radford, J.; Subramaniam, R.M.; Johnson, D.R. PET Imaging of Dementia: Update 

2022. Clin. Nucl. Med. 2022, 47, 763–773. https://doi.org/10.1097/RLU.0000000000004251. 

40. Villemagne, V.L.; Doré, V.; Bourgeat, P.; Burnham, S.C.; Laws, S.; Salvado, O.; Masters, C.L.; Rowe, C.C. Aβ-amyloid and Tau 

Imaging in Dementia. Semin. Nucl. Med. 2017, 47, 75–88. 

41. Qiu, Q. Neural Networks in Autosomal Dominant Alzheimer’s Disease: Insights From Functional Magnetic Resonance Imaging 

Studies. Front. Aging Neurosci. 2022, 14, 903269. https://doi.org/10.3389/fnagi.2022.903269. 

42. Franzmeier, N.; Düzel, E.; Jessen, F.; Buerger, K.; Levin, J.; Duering, M.; Dichgans, M.; Haass, C.; Suárez-Calvet, M.; Fagan, A.M.; 

et al. Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer’s disease. Brain 

2018, 141, 1186–1200. https://doi.org/10.1093/brain/awy008. 

43. Yu, M.; Sporns, O.; Saykin, A.J. The human connectome in Alzheimer disease-relationship to biomarkers and genetics. Nat. Rev. 

Neurol. 2021, 17, 545–563. https://doi.org/10.1038/s41582-021-00529-1. 

44. Torres-Simón, L.; Doval, S.; Nebreda, A.; Llinas, S.J.; Marsh, E.B.; Maestú, F. Understanding brain function in vascular cognitive 

impairment and dementia with EEG and MEG: A systematic review. Neuroimage Clin. 2022, 35, 103040. 

45. Babiloni, C.; Blinowska, K.; Bonanni, L.; Cichocki, A.; De Haan, W.; Del Percio, C.; Dubois, B.; Escudero, J.; Fernández, A.; 

Frisoni, G.; et al. What electrophysiology tells us about Alzheimer’s disease: A window into the synchronization and 

connectivity of brain neurons. Neurobiol. Aging 2020, 85, 58–73. 

46. Núñez, P.; Poza, J.; Gómez, C.; Rodríguez-González, V.; Hillebrand, A.; Tola-Arribas, M.A.; Cano, M.; Hornero, R. 

Characterizing the fluctuations of dynamic resting-state electrophysiological functional connectivity: Reduced neuronal 

coupling variability in mild cognitive impairment and dementia due to Alzheimer’s disease. J. Neural Eng. 2019, 16, 056030. 

https://doi.org/10.1088/1741-2552/ab234b. 

47. Morrison, C.; Rabipour, S.; Knoefel, F.; Sheppard, C.; Taler, V. Auditory Event-related Potentials in Mild Cognitive Impairment 

and Alzheimer’s Disease. Curr. Alzheimer Res. 2018, 15, 702–715. https://doi.org/10.2174/1567205015666180123123209. 

48. Cummings, J.; Kinney, J. Biomarkers for Alzheimer’s Disease: Context of Use, Qualification, and Roadmap for Clinical 

Implementation. Medicina 2022, 58, 952. https://doi.org/10.3390/medicina58070952. 

49. Dulewicz, M.; Kulczyńska-Przybik, A.; Mroczko, P.; Kornhuber, J.; Lewczuk, P.; Mroczko, B. Biomarkers for the Diagnosis of 

Alzheimer’s Disease in Clinical Practice: The Role of CSF Biomarkers during the Evolution of Diagnostic Criteria. Int. J. Mol. 

Sci. 2022, 23, 8598. https://doi.org/10.3390/ijms23158598.  

50. Hawksworth, J.; Fernández, E.; Gevaert, K. A new generation of AD biomarkers: 2019 to 2021. Ageing Res. Rev. 2022, 79, 101654. 

51. Das, S.; Dewit, N.; Jacobs, D.; Pijnenburg, Y.A.L.; In‘t Veld, S.G.J.G.; Coppens, S.; Quaglia, M.; Hirtz, C.; Teunissen, C.E.; 

Vanmechelen, E. A Novel Neurofilament Light Chain ELISA Validated in Patients with Alzheimer’s Disease, Frontotemporal 

Dementia, and Subjective Cognitive Decline, and the Evaluation of Candidate Proteins for Immunoassay Calibration. Int. J. Mol. 

Sci. 2022, 23, 7221. https://doi.org/10.3390/ijms23137221.  



Medicina 2022, 58, 1368 9 of 12 
 

 

52. Botella Lucena, P.; Vanherle, S.; Lodder, C.; Gutiérrez de Ravé, M.; Stancu, I.C.; Lambrichts, I.; Vangheluwe, R.; Bruffaerts, R.; 

Dewachter, I. Blood-based Aβ42 increases in the earliest pre-pathological stage before decreasing with progressive amyloid 

pathology in preclinical models and human subjects: Opening new avenues for prevention. Acta Neuropathol. 2022, 144, 489–

508. https://doi.org/10.1007/s00401-022-02458-9. 

53. Kokkinou, M.; Beishon, L.C.; Smailagic, N.; Noel-Storr, A.H.; Hyde, C.; Ukoumunne, O.; Worrall, R.E.; Hayen, A.; Desai, M.; 

Ashok, A.H.; et al. Plasma and cerebrospinal fluid ABeta42 for the differential diagnosis of Alzheimer’s disease dementia in 

participants diagnosed with any dementia subtype in a specialist care setting. Cochrane Database Syst. Rev. 2021, 2, CD010945. 

https://doi.org/10.1002/14651858.CD010945.pub2. 

54. Wilczyńska, K.; Waszkiewicz, N. Diagnostic Utility of Selected Serum Dementia Biomarkers: Amyloid β-40, Amyloid β-42, Tau 

Protein, and YKL-40: A Review. J. Clin. Med. 2020, 9, 3452. https://doi.org/10.3390/jcm9113452.  

55. Varesi, A.; Carrara, A.; Pires, V.G.; Floris, V.; Pierella, E.; Savioli, G.; Prasad, S.; Esposito, C.; Ricevuti, G.; Chirumbolo, S.; et al. 

Blood-Based Biomarkers for Alzheimer’s Disease Diagnosis and Progression: An Overview. Cells 2022, 11, 1367. 

https://doi.org/10.3390/cells11081367.  

56. Zhang, H.; Lyu, D.; Jia, J.; Alzheimer’s Disease Neuroimaging Initiative. The Trajectory of Cerebrospinal Fluid Growth-

Associated Protein 43 in the Alzheimer’s Disease Continuum: A Longitudinal Study. J. Alzheimers Dis. 2022, 85, 1441–1452. 

https://doi.org/10.3233/JAD-215456. 

57. Yoong, S.Q.; Lu, J.; Xing, H.; Gyanwali, B.; Tan, Y.Q.; Wu, X.V. The prognostic utility of CSF neurogranin in predicting future 

cognitive decline in the Alzheimer’s disease continuum: A systematic review and meta-analysis with narrative synthesis. Ageing 

Res. Rev. 2021, 72, 101491. 

58. Winfree, R.L.; Dumitrescu, L.; Blennow, K.; Zetterberg, H.; Gifford, K.A.; Pechman, K.R.; Jefferson, A.L.; Hohman, T.J.; 

Alzheimer’s Disease Neuroimaging Initiative. Biological correlates of elevated soluble TREM2 in cerebrospinal fluid. Neurobiol. 

Aging 2022, 118, 88–98. 

59. Katayama, T.; Sawada, J.; Takahashi, K.; Yahara, O.; Hasebe, N. Meta-analysis of cerebrospinal fluid neuron-specific enolase 

levels in Alzheimer’s disease, Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Alzheimers Res. 

Ther. 2021, 13, 163. https://doi.org/10.1186/s13195-021-00907-3. 

60. Mavroudis, I.; Chowdhury, R.; Petridis, F.; Karantali, E.; Chatzikonstantinou, S.; Balmus, I.M.; Luca, I.S.; Ciobica, A.; Kazis, D. 

YKL-40 as a Potential Biomarker for the Differential Diagnosis of Alzheimer’s Disease. Medicina 2021, 58, 60. 

https://doi.org/10.3390/medicina58010060.  

61. Vrillon, A.; Mouton-Liger, F.; Martinet, M.; Cognat, E.; Hourregue, C.; Dumurgier, J.; Bouaziz-Amar, E.; Brinkmalm, A.; 

Blennow, K.; Zetterberg, H.; et al. Plasma neuregulin 1 as a synaptic biomarker in Alzheimer’s disease: A discovery cohort 

study. Alzheimers Res. Ther. 2022, 14, 71. https://doi.org/10.1186/s13195-022-01014-7. 

62. Iranifar, E.; Seresht, B.M.; Momeni, F.; Fadaei, E.; Mehr, M.H.; Ebrahimi, Z.; Rahmati, M.; Kharazinejad, E.; Mirzaei, H. Exosomes 

and microRNAs: New potential therapeutic candidates in Alzheimer disease therapy. J. Cell. Physiol. 2019, 234, 2296–2305. 

https://doi.org/10.1002/jcp.27214. 

63. Blount, G.S.; Coursey, L.; Kocerha, J. MicroRNA Networks in Cognition and Dementia. Cells 2022, 11, 1882. 

https://doi.org/10.3390/cells11121882.  

64. Kim, K.Y.; Shin, K.Y.; Chang, K.A. Brain-Derived Exosomal Proteins as Effective Biomarkers for Alzheimer’s Disease: A 

Systematic Review and Meta-Analysis. Biomolecules 2021, 11, 980. https://doi.org/10.3390/biom11070980.  

65. Hadley, G.; Zhang, J.; Harris-Skillman, E.; Alexopoulou, Z.; DeLuca, G.C.; Pendlebury, S.T. Cognitive decline and diabetes: A 

systematic review of the neuropathological correlates accounting for cognition at death. J. Neurol. Neurosurg. Psychiatry 2022, 

93, 246–253. https://doi.org/10.1136/jnnp-2021-328158. 

66. Viejo, L.; Noori, A.; Merrill, E.; Das, S.; Hyman, B.T.; Serrano-Pozo, A. Systematic review of human post-mortem 

immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer’s disease. 

Neuropathol. Appl. Neurobiol. 2022, 48, e12753. https://doi.org/10.1111/nan.12753. 

67. Jester, H.M.; Gosrani, S.P.; Ding, H.; Zhou, X.; Ko, M.C.; Ma, T. Characterization of Early Alzheimer’s Disease-Like Pathological 

Alterations in Non-Human Primates with Aging: A Pilot Study. J. Alzheimers Dis. 2022, 88, 957–970. https://doi.org/10.3233/JAD-

215303. 

68. Maxwell, S.P.; Cash, M.K.; Darvesh, S. Neuropathology and cholinesterase expression in the brains of octogenarians and older. 

Chem. Biol. Interact. 2022, 364, 110065. 

69. Nelson, P.T.; Brayne, C.; Flanagan, M.E.; Abner, E.L.; Agrawal, S.; Attems, J.; Castellani, R.J.; Corrada, M.M.; Cykowski, M.D.; 

Di, J.; et al. Frequency of LATE neuropathologic change across the spectrum of Alzheimer’s disease neuropathology: Combined 

data from 13 community-based or population-based autopsy cohorts. Acta Neuropathol. 2022, 144, 27–44. 

https://doi.org/10.1007/s00401-022-02444-1. 

70. Ingham, D.J.; Hillyer, K.M.; McGuire, M.J.; Gamblin, T.C. In vitro Tau Aggregation Inducer Molecules Influence the Effects of 

MAPT Mutations on Aggregation Dynamics. Biochemistry 2022, 61, 1243–1259. https://doi.org/10.1021/acs.biochem.2c00111. 

71. Aso, E.; Lomoio, S.; López-González, I.; Joda, L.; Carmona, M.; Fernández-Yagüe, N.; Moreno, J.; Juvés, S.; Pujol, A.; Pamplona, 

R.; et al. Amyloid generation and dysfunctional immunoproteasome activation with disease progression in animal model of 

familial Alzheimer’s disease. Brain Pathol. 2012, 22, 636–653. https://doi.org/10.1111/j.1750-3639.2011.00560.x. 



Medicina 2022, 58, 1368 10 of 12 
 

 

72. Tan, M.S.; Cheah, P.L.; Chin, A.V.; Looi, L.M.; Chang, S.W. A review on omics-based biomarkers discovery for Alzheimer’s 

disease from the bioinformatics perspectives: Statistical approach vs machine learning approach. Comput. Biol. Med. 2021, 139, 

104947. 

73. Cruchaga, C.; Del-Aguila, J.L.; Saef, B.; Black, K.; Fernandez, M.V.; Budde, J.; Ibanez, L.; Deming, Y.; Kapoor, M.; Tosto, G.; et 

al. Polygenic risk score of sporadic late-onset Alzheimer’s disease reveals a shared architecture with the familial and early-onset 

forms. Alzheimers Dement. 2018, 14, 205–214. 

74. Schwartzentruber, J.; Cooper, S.; Liu, J.Z.; Barrio-Hernandez, I.; Bello, E.; Kumasaka, N.; Young, A.M.H.; Franklin, R.J.M.; 

Johnson, T.; Estrada, K.; et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new 

Alzheimer’s disease risk genes. Nat. Genet. 2021, 53, 392–402. https://doi.org/10.1038/s41588-020-00776-w. 

75. Villa, C.; Stoccoro, A. Epigenetic Peripheral Biomarkers for Early Diagnosis of Alzheimer’s Disease. Genes 2022, 13, 1308. 

https://doi.org/10.3390/genes13081308.  

76. Kononikhin, A.S.; Zakharova, N.V.; Semenov, S.D.; Bugrova, A.E.; Brzhozovskiy, A.G.; Indeykina, M.I.; Fedorova, Y.B.; 

Kolykhalov, I.V.; Strelnikova, P.A.; Ikonnikova, A.Y.; et al. Prognosis of Alzheimer’s Disease Using Quantitative Mass 

Spectrometry of Human Blood Plasma Proteins and Machine Learning. Int. J. Mol. Sci. 2022, 23, 7907. 

https://doi.org/10.3390/ijms23147907.  

77. Stecker, M.; Stecker, M.; Reiss, A.B.; Kasselman, L. Dementia and Diet, Methodological and Statistical Issues: A Pilot Study. 

Front. Aging Neurosci. 2022, 14, 606424. https://doi.org/10.3389/fnagi.2022.606424. 

78. Stecker, M.M.; Peltier, M.R.; Reiss, A.B. The role of massive demographic databases in intractable illnesses: Denomics for 

dementia. AIMS Public Health 2022, 9, 618–629. 

79. Zhang, X.; Hu, W.; Wang, Y.; Wang, W.; Liao, H.; Zhang, X.; Kiburg, K.V.; Shang, X.; Bulloch, G.; Huang, Y.; et al. Plasma 

metabolomic profiles of dementia: A prospective study of 110,655 participants in the UK Biobank. BMC Med. 2022, 20, 252. 

https://doi.org/10.1186/s12916-022-02449-3. 

80. Kalecký, K.; German, D.C.; Montillo, A.A.; Bottiglieri, T. Targeted Metabolomic Analysis in Alzheimer’s Disease Plasma and 

Brain Tissue in Non-Hispanic Whites. J. Alzheimers Dis. 2022, 86, 1875–1895. https://doi.org/10.3233/JAD-215448. 

81. Anonymous. Protection of human subjects; Belmont Report: Notice of report for public comment. Fed. Regist. 1979, 44, 23191–

23197. 

82. Marshall, P.J.; Verma, A.; More, A.; Davis, C.P.; More, S.; Kapadia, A.; Parrish, M.; Snyder, C.; Wilcox, J.; Baeten, E.; et al. Space 

Warps—I. Crowdsourcing the discovery of gravitational lenses. Mon. Not. R. Astron. Soc. 2015, 455, 1171–1190. 

https://doi.org/10.1093/mnras/stv2009. 

83. Li, Z.; Jiang, X.; Wang, Y.; Kim, Y. Applied machine learning in Alzheimer’s disease research: Omics, imaging, and clinical data. 

Emerg. Top. Life. Sci. 2021, 5, 765–777. https://doi.org/10.1042/ETLS20210249. 

84. Luckett, P.H.; McCullough, A.; Gordon, B.A.; Strain, J.; Flores, S.; Dincer, A.; McCarthy, J.; Kuffner, T.; Stern, A.; Meeker, K.L.; 

et al. Modeling autosomal dominant Alzheimer’s disease with machine learning. Alzheimers Dement. 2021, 17, 1005–1016. 

https://doi.org/10.1002/alz.12259. 

85. Cao, H.; Meyer-Lindenberg, A.; Schwarz, E. Comparative Evaluation of Machine Learning Strategies for Analyzing Big Data in 

Psychiatry. Int. J. Mol. Sci. 2018, 19, 3387. https://doi.org/10.3390/ijms19113387.  

86. Mor, U.; Cohen, Y.; Valdés-Mas, R.; Kviatcovsky, D.; Elinav, E.; Avron, H. Dimensionality reduction of longitudinal ‘omics data 

using modern tensor factorizations. PLoS Comput. Biol. 2022, 18, e1010212. https://doi.org/10.1371/journal.pcbi.1010212. 

87. Olivier, M.; Asmis, R.; Hawkins, G.A.; Howard, T.D.; Cox, L.A. The Need for Multi-Omics Biomarker Signatures in Precision 

Medicine. Int. J. Mol. Sci. 2019, 20, 4781. https://doi.org/10.3390/ijms20194781.  

88. Malek-Ahmadi, M.; O’Connor, K.; Schofield, S.; Coon, D.W.; Zamrini, E. Trajectory and variability characterization of the 

Montreal cognitive assessment in older adults. Aging Clin. Exp. Res. 2018, 30, 993–998. https://doi.org/10.1007/s40520-017-0865-

x. 

89. Flicker, C.; Ferris, S.H.; Reisberg, B. A two-year longitudinal study of cognitive function in normal aging and Alzheimer’s 

disease. J. Geriatr. Psychiatry Neurol. 1993, 6, 84–96. https://doi.org/10.1177/089198879300600205. 

90. Farias, S.T.; Mungas, D.; Reed, B.; Haan, M.N.; Jagust, W.J. Everyday functioning in relation to cognitive functioning and 

neuroimaging in community-dwelling Hispanic and non-Hispanic older adults. J. Int. Neuropsychol. Soc. 2004, 10, 342–354. 

91. Korten, A.E.; Henderson, A.S.; Christensen, H.; Jorm, A.F.; Rodgers, B.; Jacomb, P.; Mackinnon, A.J. A prospective study of 

cognitive function in the elderly. Psychol. Med. 1997, 27, 919–930. https://doi.org/10.1017/s0033291797005217. 

92. Janahi, M.; Aksman, L.; Schott, J.M.; Mokrab, Y.; Altmann, A.; for the Alzheimer’s Disease Neuroimaging Initiative. Nomograms 

of human hippocampal volume shifted by polygenic scores. Elife 2022, 11, e78232. https://doi.org/10.7554/eLife.78232. 

93. Lu, J.; Testa, N.; Jordan, R.; Elyan, R.; Kanekar, S.; Wang, J.; Eslinger, P.; Yang, Q.X.; Zhang, B.; Karunanayaka, P.R. Functional 

Connectivity between the Resting-State Olfactory Network and the Hippocampus in Alzheimer’s Disease. Brain Sci. 2019, 9, 

338. https://doi.org/10.3390/brainsci9120338.  

94. Cheung, E.Y.W.; Shea, Y.F.; Chiu, P.K.C.; Kwan, J.S.K.; Mak, H.K.F. Diagnostic Efficacy of Voxel-Mirrored Homotopic 

Connectivity in Vascular Dementia as Compared to Alzheimer’s Related Neurodegenerative Diseases-A Resting State fMRI 

Study. Life 2021, 11, 1108. https://doi.org/10.3390/life11101108.  

95. Shu, J.; Qiang, Q.; Yan, Y.; Wen, Y.; Ren, Y.; Wei, W.; Zhang, L. Distinct Patterns of Brain Atrophy associated with Mild 

Behavioral Impairment in Cognitively Normal Elderly Adults. Int. J. Med. Sci. 2021, 18, 2950–2956. 

https://doi.org/10.7150/ijms.60810. 



Medicina 2022, 58, 1368 11 of 12 
 

 

96. Lark, D.S.; LaRocca, T.J. Expression of Exosome Biogenesis Genes Is Differentially Altered by Aging in the Mouse and in the 

Human Brain During Alzheimer’s Disease. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 659–663. 

https://doi.org/10.1093/gerona/glab322. 

97. Borkowski, K.; Taha, A.Y.; Pedersen, T.L.; De Jager, P.L.; Bennett, D.A.; Arnold, M.; Kaddurah-Daouk, R.; Newman, J.W. Serum 

metabolomic biomarkers of perceptual speed in cognitively normal and mildly impaired subjects with fasting state 

stratification. Sci. Rep. 2021, 11, 18964. https://doi.org/10.1038/s41598-021-98640-2. 

98. Sheinerman, K.; Tsivinsky, V.; Mathur, A.; Kessler, D.; Shaz, B.; Umansky, S. Age- and sex-dependent changes in levels of 

circulating brain-enriched microRNAs during normal aging. Aging 2018, 10, 3017–3041. https://doi.org/10.18632/aging.101613. 

99. Struys-Ponsar, C.; Florence, A.; Gauthier, A.; Crichton, R.R.; van den Bosch de Aguilar, P. Ultrastructural changes in brain 

parenchyma during normal aging and in animal models of aging. J. Neural Transm. Suppl. 1994, 44, 111–132. 

https://doi.org/10.1007/978-3-7091-9350-1_9. 

100. Shaker, M.R.; Hunter, Z.L.; Wolvetang, E.J. Robust and Highly Reproducible Generation of Cortical Brain Organoids for 

Modelling Brain Neuronal Senescence In Vitro. J. Vis. Exp. 2022, 183, e63714. https://doi.org/10.3791/63714. 

101. Jones, D.; Lowe, V.; Graff-Radford, J.; Botha, H.; Barnard, L.; Wiepert, D.; Murphy, M.C.; Murray, M.; Senjem, M.; Gunter, J.; et 

al. A computational model of neurodegeneration in Alzheimer’s disease. Nat. Commun. 2022, 13, 1643. 

https://doi.org/10.1038/s41467-022-29047-4. 

102. Toescu, E.C. Normal brain ageing: Models and mechanisms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 2347–2354. 

103. Creavin, S.T.; Noel-Storr, A.H.; Langdon, R.J.; Richard, E.; Creavin, A.L.; Cullum, S.; Purdy, S.; Ben-Shlomo, Y. Clinical 

judgement by primary care physicians for the diagnosis of all-cause dementia or cognitive impairment in symptomatic people. 

Cochrane Database Syst. Rev. 2022, 6, CD012558. https://doi.org/10.1002/14651858.CD012558.pub2. 

104. Previtali, F.; Bertolazzi, P.; Felici, G.; Weitschek, E. A novel method and software for automatically classifying Alzheimer’s 

disease patients by magnetic resonance imaging analysis. Comput. Methods Programs Biomed. 2017, 143, 89–95. 

105. Halliday, G.; Ng, T.; Rodriguez, M.; Harding, A.; Blumbergs, P.; Evans, W.; Fabian, V.; Fryer, J.; Gonzales, M.; Harper, C.; et al. 

Consensus neuropathological diagnosis of common dementia syndromes: Testing and standardising the use of multiple 

diagnostic criteria. Acta Neuropathol. 2002, 104, 72–78. https://doi.org/10.1007/s00401-002-0529-5. 

106. Lin, W.; Gao, Q.; Yuan, J.; Chen, Z.; Feng, C.; Chen, W.; Du, M.; Tong, T. Predicting Alzheimer’s Disease Conversion From Mild 

Cognitive Impairment Using an Extreme Learning Machine-Based Grading Method With Multimodal Data. Front. Aging 

Neurosci. 2020, 12, 77. https://doi.org/10.3389/fnagi.2020.00077. 

107. Nagy, Z.; Esiri, M.M.; Joachim, C.; Jobst, K.A.; Morris, J.H.; King, E.M.; Hindley, N.J.; McDonald, B.; Litchfield, S.; Barnetson, 

L.; et al. Comparison of pathological diagnostic criteria for Alzheimer disease. Alzheimer Dis. Assoc. Disord. 1998, 12, 182–189. 

https://doi.org/10.1097/00002093-199809000-00010. 

108. Silver, M.H.; Newell, K.; Brady, C.; Hedley-White, E.T.; Perls, T.T. Distinguishing between neurodegenerative disease and 

disease-free aging: Correlating neuropsychological evaluations and neuropathological studies in centenarians. Psychosom. Med. 

2002, 64, 493–501. https://doi.org/10.1097/00006842-200205000-00014. 

109. Hendriks, S.; Peetoom, K.; Tange, H.; van Bokhoven, M.A.; van der Flier, W.M.; Bakker, C.; Papma, J.M.; Koopmans, R.; Verhey, 

F.; Köhler, S.; et al. Pre-Diagnostic Symptoms of Young-Onset Dementia in the General Practice up to Five Years Before 

Diagnosis. J. Alzheimers Dis. 2022, 88, 229–239. https://doi.org/10.3233/JAD-220215. 

110. Frank, B.; Ally, M.; Tripodis, Y.; Puzo, C.; Labriolo, C.; Hurley, L.; Martin, B.; Palmisano, J.; Chan, L.; Steinberg, E.; et al. 

Trajectories of Cognitive Decline in Brain Donors With Autopsy-Confirmed Alzheimer Disease and Cerebrovascular Disease. 

Neurology 2022, 98, e2454–e2464. https://doi.org/10.1212/WNL.0000000000200304. 

111. Karanth, S.D.; Schmitt, F.A.; Nelson, P.T.; Katsumata, Y.; Kryscio, R.J.; Fardo, D.W.; Harp, J.P.; Abner, E.L. Four Common Late-

Life Cognitive Trajectories Patterns Associate with Replicable Underlying Neuropathologies. J. Alzheimers Dis. 2021, 82, 647–

659. https://doi.org/10.3233/JAD-210293. 

112. Tanprasertsuk, J.; Johnson, E.J.; Johnson, M.A.; Poon, L.W.; Nelson, P.T.; Davey, A.; Martin, P.; Barbey, A.K.; Barger, K.; Wang, 

X.D.; et al. Clinico-Neuropathological Findings in the Oldest Old from the Georgia Centenarian Study. J. Alzheimers Dis. 2019, 

70, 35–49. https://doi.org/10.3233/JAD-181110. 

113. Braak, H.; Braak, E.; Bohl, J. Staging of Alzheimer-related cortical destruction. Eur. Neurol. 1993, 33, 403–408. 

https://doi.org/10.1159/000116984. 

114. Westwood, S.; Baird, A.L.; Anand, S.N.; Nevado-Holgado, A.J.; Kormilitzin, A.; Shi, L.; Hye, A.; Ashton, N.J.; Morgan, A.R.; 

Bos, I.; et al. Validation of Plasma Proteomic Biomarkers Relating to Brain Amyloid Burden in the EMIF-Alzheimer’s Disease 

Multimodal Biomarker Discovery Cohort. J. Alzheimers Dis. 2020, 74, 213–225. https://doi.org/10.3233/JAD-190434. 

115. Yamashita, K.; Miura, M.; Watanabe, S.; Ishiki, K.; Arimatsu, Y.; Kawahira, J.; Kubo, T.; Sasaki, K.; Arai, T.; Hagino, K.; et al. 

Fully automated and highly specific plasma β-amyloid immunoassays predict β-amyloid status defined by amyloid positron 

emission tomography with high accuracy. Alzheimers Res. Ther. 2022, 14, 86. https://doi.org/10.1186/s13195-022-01029-0. 

116. Janelidze, S.; Christian, B.T.; Price, J.; Laymon, C.; Schupf, N.; Klunk, W.E.; Lott, I.; Silverman, W.; Rosas, H.D.; Zaman, S.; et al. 

Detection of Brain Tau Pathology in Down Syndrome Using Plasma Biomarkers. JAMA Neurol. 2022, 79, 797–807. 

https://doi.org/10.1001/jamaneurol.2022.1740. 

117. Guénette, S.Y.; Tanzi, R.E. Progress toward valid transgenic mouse models for Alzheimer’s disease. Neurobiol. Aging 1999, 20, 

201–211. 



Medicina 2022, 58, 1368 12 of 12 
 

 

118. Dewachter, I.; van Dorpe, J.; Spittaels, K.; Tesseur, I.; Van Den Haute, C.; Moechars, D.; Van Leuven, F. Modeling Alzheimer’s 

disease in transgenic mice: Effect of age and of presenilin1 on amyloid biochemistry and pathology in APP/London mice. Exp. 

Gerontol. 2000, 35, 831–841. 

119. Sanchez-Varo, R.; Mejias-Ortega, M.; Fernandez-Valenzuela, J.J.; Nuñez-Diaz, C.; Caceres-Palomo, L.; Vegas-Gomez, L.; 

Sanchez-Mejias, E.; Trujillo-Estrada, L.; Garcia-Leon, J.A.; Moreno-Gonzalez, I.; et al. Transgenic Mouse Models of Alzheimer’s 

Disease: An Integrative Analysis. Int. J. Mol. Sci. 2022, 23, 5404. https://doi.org/10.3390/ijms23105404.  

120. Van Dam, D.; De Deyn, P.P. Non human primate models for Alzheimer’s disease-related research and drug discovery. Expert 

Opin. Drug Discov. 2017, 12, 187–200. https://doi.org/10.1080/17460441.2017.1271320. 

121. Wu, Y.; West, N.R.; Bhattacharyya, A.; Wiseman, F.K. Cell models for Down syndrome-Alzheimer’s disease research. Neuronal 

Signal. 2022, 6, NS20210054. https://doi.org/10.1042/NS20210054. 

122. Hargus, G.; Ehrlich, M.; Hallmann, A.L.; Kuhlmann, T. Human stem cell models of neurodegeneration: A novel approach to 

study mechanisms of disease development. Acta Neuropathol. 2014, 127, 151–173. https://doi.org/10.1007/s00401-013-1222-6. 

123. Bubnys, A.; Tsai, L.H. Harnessing cerebral organoids for Alzheimer’s disease research. Curr. Opin. Neurobiol. 2022, 72, 120–130. 

124. Tan, H.Y.; Cho, H.; Lee, L.P. Human mini-brain models. Nat. Biomed. Eng. 2021, 5, 11–25. https://doi.org/10.1038/s41551-020-

00643-3. 

125. Dubey, S.K.; Ram, M.S.; Krishna, K.V.; Saha, R.N.; Singhvi, G.; Agrawal, M.; Ajazuddin; Saraf, S.; Saraf, S.; Alexander, A. Recent 

Expansions on Cellular Models to Uncover the Scientific Barriers Towards Drug Development for Alzheimer’s Disease. Cell. 

Mol. Neurobiol. 2019, 39, 181–209. https://doi.org/10.1007/s10571-019-00653-z. 

126. Hunanyan, L.; Ghamaryan, V.; Makichyan, A.; Popugaeva, E. Computer-Based Drug Design of Positive Modulators of Store-

Operated Calcium Channels to Prevent Synaptic Dysfunction in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 13618. 

https://doi.org/10.3390/ijms222413618.  

127. Ugbaja, S.C.; Lawal, I.A.; Kumalo, H.M.; Lawal, M.M. Alzheimer’s Disease and β-secretase Inhibition: An Update with a Focus 

on Computer-aided Inhibitor Design. Curr. Drug Targets 2022, 23, 266–285. https://doi.org/10.2174/1389450122666210809100050. 

128. Gandolfi, D.; Boiani, G.M.; Bigiani, A.; Mapelli, J. Modeling Neurotransmission: Computational Tools to Investigate 

Neurological Disorders. Int. J. Mol. Sci. 2021, 22, 4565. https://doi.org/10.3390/ijms22094565.  

129. Vosoughi, A.; Sadigh-Eteghad, S.; Ghorbani, M.; Shahmorad, S.; Farhoudi, M.; Rafi, M.A.; Omidi, Y. Mathematical Models to 

Shed Light on Amyloid-Beta and Tau Protein Dependent Pathologies in Alzheimer’s Disease. Neuroscience 2020, 424, 45–57. 

130. Paiva, V.A.; Gomes, I.S.; Monteiro, C.R.; Mendonça, M.V.; Martins, P.M.; Santana, C.A.; Gonçalves-Almeida, V.; Izidoro, S.C.; 

Melo-Minardi, R.C.; Silveira, S.A. Protein structural bioinformatics: An overview. Comput. Biol. Med. 2022, 147, 105695. 

131. Okumura, H.; Itoh, S.G. Molecular Dynamics Simulation Studies on the Aggregation of Amyloid-β Peptides and Their 

Disaggregation by Ultrasonic Wave and Infrared Laser Irradiation. Molecules 2022, 27, 2483. 

https://doi.org/10.3390/molecules27082483.  

132. Itoh, S.G.; Okumura, H. All-Atom Molecular Dynamics Simulation Methods for the Aggregation of Protein and Peptides: 

Replica Exchange/Permutation and Nonequilibrium Simulations. Methods Mol. Biol. 2022, 2340, 197–220. 

https://doi.org/10.1007/978-1-0716-1546-1_10. 

133. Jones, M.D.; Naylor, K. Simple to Complex: The Role of Actin and Microtubules in Mitochondrial Dynamics in Amoeba, Yeast, 

and Mammalian Cells. Int. J. Mol. Sci. 2022, 23, 9402. https://doi.org/10.3390/ijms23169402.  

134. Qi, T.; McGrath, K.; Ranganathan, R.; Dotti, G.; Cao, Y. Cellular kinetics: A clinical and computational review of CAR-T cell 

pharmacology. Adv. Drug Deliv. Rev. 2022, 188, 114421. 

135. Salahub, D.R. Multiscale molecular modelling: From electronic structure to dynamics of nanosystems and beyond. Phys. Chem. 

Chem. Phys. 2022, 24, 9051–9081. https://doi.org/10.1039/d1cp05928a. 

136. Nandi, A.; Counts, N.; Chen, S.; Seligman, B.; Tortorice, D.; Vigo, D.; Bloom, D.E. Global and regional projections of the 

economic burden of Alzheimer’s disease and related dementias from 2019 to 2050: A value of statistical life approach. 

EClinicalMedicine 2022, 51, 101580. https://doi.org/10.1016/j.eclinm.2022.101580. 


